Formulazione degli algoritmi delle funzioni di correlazione digitali

Da Wikiversità, l'apprendimento libero.
Jump to navigation Jump to search
lezione
Formulazione degli algoritmi delle funzioni di correlazione digitali
Tipo di risorsa Tipo: lezione
Materia di appartenenza Materia: Sulle funzioni di correlazione digitali
Avanzamento Avanzamento: lezione completa al 100%.


Estensione del concetto di autocorrelazione per serie infinita di grandezze a due stati[modifica]

Sulle grandezze dei segnali elettrici[modifica]

Nella lezioni precedenti abbiamo introdotto le grandezze funzioni del tempo, genericamente definite con i simbolo ; una grandezza di questo tipo è caratterizzata, per ogni istante del tempo sia da un valore di ampiezza che dalla polarità, positiva o negativa, del valore stesso.

Con le grandezze abbiamo impostato le funzioni di autocorrelazione e correlazione incrociata secondo la teoria corrente, dette funzioni sono state indicate come analogiche.

Un diverso approccio alle funzioni di correlazione si realizza con i segnali elettrici limitati in ampiezza, questi segnali, detti a due stati, sono indicati con il simbolo [1]

Le grandezze a due stati [2] hanno una diversa struttura rispetto alle grandezza ; per ogni istante del tempo hanno sempre ampiezza costante con polarità positiva o negativa.

Le grandezze a due stati[modifica]

E' facile trasformare, se necessario, le grandezze mediante sistemi di limitazione di ampiezza.

Un caso semplice si ottiene partendo dalla , segnale sinusoidale, che dopo limitazione in ampiezza si trasforma nella corrispondente , come chiaramente mostrato in figura 1:


figura 1


Per la trasformazione dei segnali elettrici a banda larga da analogici ( ampiezze e segni ) in segnali a due stati ( solo i segni ) si limitano in ampiezza le tensioni così come mostra da un punto di vista teorico la figura 2:.

figura 2

La figura 2 mostra il segnale analogico in rosso, i suoi passaggi per gli zeri in blu e la conseguente forma del segnale limitato in ampiezza, in nero, quest'ultima cambia segno od ogni ualvolta la tensione analogica, ondulando, passa per il valore .

In figura 3 la limitazione d'ampiezza di un segnale a larga banda vista in pratica su oscilloscopio:

figura 3

Le funzioni di autocorrelazione per le grandezze a due stati[modifica]

Gli algoritmi che definiscono le funzioni di autocorrelazione per le grandezze di dati continui a due stati discendono dalle omologhe per i dati secondo la teoria esposta da VAN VLECK per le grandezze del tempo a distribuzione gaussiana.

Anche in questo caso non entreremo nell'area delle dimostrazioni analitiche, ma riporteremo, caso per caso, le diverse formule per il calcolo delle funzioni di autocorrelazione digitale che definiremo con per diversificarle dalle corrispondenti della correlazione analogica.

[modifica]

La funzione di autocorrelazione per la grandezza [modifica]

La funzione di autocorrelazione normalizzata per una grandezza del tipo di quella riportata in figura 1 (onda rettangolare) e definita come segue:


1)


dove


L'andamento della per rad. è mostrato in figura 4:


figura 4

Le funzioni di autocorrelazione per le grandezze definite in banda di rumore[modifica]

In questo caso si deve supporre che le grandezze , da cui discendono le abbiano uno spettro di tipo rettangolare limitato nella banda compresa tra o tra

Banda

Nel caso di banda compresa tra la sarà:


2)


il cui andamento grafico per è riportato in figura 5:

figura 5

Dalla figura 5 si nota la differenza tra la e la : la prima presenta una cuspide per mentre la seconda mostra un profilo arrotondato caratteristico delle funzioni

La cuspide di è dovuta alla funzione della 2) che nel piccolo intorno a altro non è che l'arco di . variabile linearmente con .

Con il crescere di la dipendenza lineare viene a mancare e la 2) riprende 1'andamento caratteristico simile alla funzione .


Banda

Nel caso di banda compresa tra sara:


3)


L'andamento della nell'ipotesi di è riportato nel grafico di figura 6:

figura 6

Breve cenno sui correlatori digitali[modifica]

Gli sviluppi matematici che abbiamo sopra eseguito sono automaticamente svolti da un dispositivo indicato come correlatore digitale realizzabile o in hardware o in software; qui di seguito descriveremo la struttura funzionale hardware di un correlatore del tipo digitale il cui schema a blocchi e mostrato in figura 7.

figura 7

Il correlatore digitale [3] riportato nella figura, è costituito da un insieme circuitale con due ingressi S1 ed S2, da un gruppo di ritardo a passi di variabile a comando, da una coppia di circuiti di limitazione d’ampiezza L1, L2 da un blocco di moltiplicazione logica e da un blocco d'integrazione da cui, tramite l'uscita u, si preleva, in forma di tensione elettrica continua,[4] la funzione voluta.

Si deve osservare che i segnali applicati all'ingresso dei correlatori digitali sono dello stesso tipo di quelli applicati nei correlatori analogici.

La differenza tra i due correlatori sta nel fatto che i primi hanno un moltiplicatore dei segni delle , ottenute dopo limitazione d'ampiezza dalle , mentre i secondi hanno un moltiplicatore tanto dei segni che delle ampiezze. [5].

La figura 2 mostra chiaramente che se si deve computare la funzione di autocorrelazione il segnale applicato sarà unico e sarà uguale a e gli ingressi i1 e i2 saranno collegati tra loro a formare un solo ingresso.

Se invece si deve computare la funzione di correlazione incrociata tra e la prima sarà applicata all'ingresso i1 e la seconda all'ingresso i2.

In entrambi i casi l'uscita ( u ) fornirà la funzione di correlazione richiesta in dipendenza del valore del ritardo introdotto.

Sulle differenze tra correlatori digitali e correlatori analogici

I correlatori digitali sono più adatti alle prove di laboratorio che i correlatori analogici perché i primi sono molto più semplici dei secondi.

I correlatori digitali, data la loro semplicità, possono essere facilmente moltiplicati in numero consentono operazioni di sviluppo molto complesse.

Note[modifica]

  1. Vedremo in seguito come la correlazione tra segnali limitati d'ampiezza, indicata come digitale, pur con qualche peggioramento nel rapporto segnale/disturbo, è di più facile realizzazione pratica e con un peso economico inferiore rispetto alla correlazione analogica
  2. Caratterizzate da due livelli di tensione sono indicate come digitali, da non confondersi con le grandezze espresse in via numerica.
  3. Indicato come correlatore digitale per differenziarlo da altri tipi di correlatori (ad esempio i correlatori analogici)
  4. Generalmente sovrapposta alla tensione continua si trava una piccola tensione di rumore indicata come Varianza
  5. Moltiplicare i segnali per via analogica è estremante più complicato e costoso che eseguire, dopo limitazione d'ampiezza, il loro prodotto logico.