Aiuto:Prontuario TeX

Da Wikiversità, l'apprendimento libero.
Jump to navigation Jump to search

In questa pagina presentiamo i segni e i costrutti facenti parte del sottolinguaggio TeX/LaTeX che consente l'inserimento di formule matematiche nelle pagine di Wikiversità. Le possibilità sono presentate in ordine alfabetico al fine di facilitare il ritrovamento da parte di chi possegga già qualche conoscenza di TeX o LaTeX.

In questa pagina si intendono anche fornire esempi tendenzialmente significativi, al fine di stimolare la omogeneità delle notazioni.

A · B · C · D · E · F · G · I · L · M · N · O · P · Q · R · S · T · V · VARIE

A[modifica]

accenti e segni diacritici
\grave{a} \acute{e}
\hat{H} \check{c}
\bar{\mathbf{v}} \vec{\mathcal{M}}
\dot{\rho} \ddot{\mathsf{X}}
\breve{o} \tilde{N}
angoli
15^\circ 12' 38 A \hat B C
\widehat{HJK} \angle A \hat B C
\widehat{\mathbf{vw}} \angle \vec{OA} \vec{OB}

B[modifica]

binomiali, coefficienti
{n \choose k} := \frac{n!}{k!(n-k)!}
{n \choose k} = (n-1 \choose k-1} + (n-1 \choose k}

C[modifica]

calligrafica, font

vedi font speciali

complessi, espressioni per numeri
z = x + iy = \rho e^{i \theta} = |z| e^{i \arg z}
\Re(x + iy) = x \Im(x + iy) = y

D[modifica]

derivate
{d\over dx} f(x) {\partial \over \partial y} F(x,y)
\nabla, \partial x, dx, \dot x, \ddot y, \psi(x)
determinanti
\det\left[\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j} \,|\, 1\leq i,j\leq n \right]
\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} = 1
disponibili, segni
\heartsuit \spadesuit \clubsuit \diamondsuit
\imath \ell \wp \mho
\flat \natural \sharp \mathcal{x}
\top \bot \Box \Diamond

E[modifica]

ebraiche, lettere

\aleph         \beth       \gimel       \daleth

entità particolari
  \empty   \infty   \hbar
  \N   \R
esponenziali

10^{a+b}         \,10^{a+b}\,         e^{-x^2}           {{4^4}^4}^4         {{{5^5}^5}^5}^5

F[modifica]

font, confronto

  \mathcal{CALLIGRAFICA}

  \mathit{Corsivo\ (Italic)}

  \mathfrak{fraktur\ minuscolo}

  \mathfrak{FRAKTUR\ MAIUSCOLO}

  \mathbf{Grassetto (boldface)}

  \mathrm{Normale\ (Roman)}

  \mathsf{Sans\ Serif}

  \mathbb{STILE\ LAVAGNA}

fraktur, font

  \mathfrak{abcdefghijklm} \mathfrak{nopqrstuvwxyz}

  \mathfrak{ABCDEFGHIJKLM} \mathfrak{NOPQRSTUVWXYZ}

frazioni

{a\over b}         \frac{x+a}{x^2-2x+5}  

frecce
\leftarrow   \rightarrow   \uparrow  
\longleftarrow   \longrightarrow   \downarrow  
\Leftarrow   \Rightarrow   \Uparrow  
\Longleftarrow   \Longrightarrow   \Downarrow  
\leftrightarrow   \updownarrow  
\Leftrightarrow   \Longleftrightarrow   \Updownarrow  
\to   \mapsto   \longmapsto  
\hookleftarrow   \hookrightarrow   \nearrow  
\searrow   \swarrow   \nwarrow  
funzioni standard, simboli per le
\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

G[modifica]

geometria, simboli per la

  \triangle               \angle      

grassetto, caratteri in
lettere normali \mathbf{x}, \mathbf{y}, \mathbf{Z}
lettere greche \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}
greche, lettere
\alpha , \vartheta , \varpi , \chi , \Eta , \Pi ,
\beta , \iota , \rho , \psi , \Theta , \Rho ,
\gamma , \kappa , \varrho , \omega , \Iota , \Sigma ,
\delta , \lambda , \sigma , \Alpha , \Kappa , \Tau ,
\epsilon , \mu , \varsigma , \Beta , \Lambda , \Upsilon ,
\varepsilon , \nu , \tau , \Gamma , \Mu , \Phi ,
\zeta , \xi , \upsilon , \Delta , \Nu , \Chi ,
\eta , o (gewoon o) , \phi , \Epsilon , \Xi , \Psi ,
\theta , \pi , \varphi , \Zeta , O (gewoon O), \Omega ,

I[modifica]

insiemi, espressioni concernenti

  f\left(\bigcap_{i=1}^n S_i\right) \subseteq \bigcap_{i=1}^n f\left(S_i\right)

integrali

  \int         \iint         \iiint         \oint

    \int_{-2\pi}^{2\pi} f(x) dx      

    \int_{-\infty}^\infty dx\;e^{-(x-m)^2\over 2\sigma^2} g(x)

L[modifica]

limiti

  \lim_{n \to \infty}x_n

logica

  p \land \wedge \; \bigwedge \; \bar{q} \to p\

  \lor \; \vee \; \bigvee \; \lnot \; \neg q \; \setminus \; \smallsetminus

M[modifica]

matrici

    \begin{matrix} x & y \\ v & w \end{matrix}

    \begin{pmatrix} A+B & {B+C\over 2} \\ {C-B\over 2} & D \end{pmatrix}

    \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{vmatrix}

    \begin{Vmatrix} x & y \\ v & w \end{Vmatrix}

    \begin{bmatrix} M_{1,1}&M_{1,2}&M_{1,3}\\M_{2,1}&M_{2,2}&M_{2,3} \end{bmatrix}

    \begin{Bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{Bmatrix}

    \begin{vmatrix} \begin{bmatrix} x & y \\ v & w \end{bmatrix} & \begin{bmatrix} a \\ b \end{bmatrix} \\ \begin{bmatrix} a & b \end{bmatrix} & [1] \end{vmatrix}

    \begin{bmatrix} x_{11}&x_{12}&\cdots&x_{1n} \\ x_{21}&x_{22}&\cdots&x_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ x_{m1}&x_{m2}&\cdots& x_{mn} \end{bmatrix}

moduli

s_k \equiv 0 \pmod{m}

a \bmod b

N[modifica]

negazione di relazioni[1]

\not\leq   )       \not\sim       \not\models         \not=         \not<   . . . .

neretto, caratteri in

vedi grassetto, caratteri in

O[modifica]

operatori binari
  \pm   \triangleright   \setminus   \circ
  \mp   \times   \bullet   \star
  \vee   \wr   \ddagger   \cap
  \dagger   \oplus   \smallsetminus   \cdot
  \wedge   \otimes   \cup   \triangleleft
  \mathcal{t}   \mathcal{u}
operatori n-ari

vedi anche produttoria, sommatoria

  \sum   \prod   \coprod
  \bigcap   \bigcup   \biguplus
  \bigodot   \bigoplus   \bigotimes
  \bigsqcup   \bigvee   \bigwedge
operatori unari

  \nabla         \partial         \neg         \sim

P[modifica]

parentesi
  (...)   [...]   \{...\}
  |...|   \|...\|   \langle   \rangle
  \lfloor   \rfloor   \lceil   \rceil
parentesi adattabili

  \left(x^2+2bx+c\right)

  \cos\left(\int_0^\pi dx\;e^{-x} P_{2k}(x)\right)

produttoria

  \prod_{k=1}^3 K_{k+4} = K_5\cdot K_6\cdot K_7

puntini       \ldots         \cdots         \vdots         \ddots   (v.a. matrici)

Q[modifica]

quantificatori

        \forall         \exists

    \forall_{i \in \N, j \in \N \setminus \{0\}} (i/j \in \mathbb{Q})

\mathbf{x} \in \mathbb{K}^n \ \mbox{tale che}\ \mathcal{M} \mathbf{x} = \mathbf{v}

R[modifica]

radici

      \sqrt 7                   \sqrt{2\pi\rho}

  \sqrt{A^2+B^2+C^2}

  x_{1,2} = \frac{-b\pm\sqrt{b^-4ac}}{2a}

      \sqrt[3]3                         \sqrt[h+k]{ a\pm\sin(2k\pi)} }

raggruppamenti di simboli
  \overline{f\circ g\circ h}   \underline{\mbox{esatto}}
  \overleftarrow{HK}   \overrightarrow{PQ}
  \overbrace{x_1x_2\cdots x_n}   \underbrace{\alpha\beta\gamma\delta}
  \sqrt{A^2+B^2}   \sqrt[n]{p^3-{qr\over3}}
  \widehat{ABC}

  \overbrace{\overline{F\circ G}}

  \widehat{\overline{\overline{F\circ G}}}

relazioni
  \,<\,   \leq   \,>\,   \geq
  \subset   \subseteq   \supset   \supseteq
  \in   \ni   \vdash   \mathcal{a}
  \cong   \simeq   \approx   \sim
  \perp   \|   \mid   \equiv
  \frown   \smile   \triangleleft   \triangleright
  \mathcal{v}   \mathcal{w}   \models   \propto

S[modifica]

sans serif, font

  \mathsf{abcdefghijklm} \mathsf{nopqrstuvwxyz}

  \mathsf{ABCDEFGHIJKLM} \mathsf{NOPQRSTUVWXYZ}

sistemi di equazioni

    \left\{\begin{matrix}ax+by=h \\ cx+dy=k\end{matrix}\right.

sommatoria

      \sum_{k=1}^n k^2

spaziature

      a \qquad b

      a \quad b

      a\ b

      a\;b

      a\,b

      a\!b

T[modifica]

tensori e simili

  g_i^{\ j}         S_{r_1r_2}^{\ \ \ \ r_3r_4}         T_{\ j\ k}^{i\ h}

  {}_1^2\!X_3^4

V[modifica]

vettori

      \mathbf{r}=\langle x_1,x_2,x_3\rangle

  \mathbf{e}_i :\!= \langle j=1,...,n :| \delta_{i,j} \rangle

VARIE[modifica]

  100\,^{\circ}\mathrm{C}

  \left. {A \over B} \right\} \to X

Note[modifica]

  1. si ottengono con la macro \not

Pagine correlate[modifica]