Vai al contenuto

Integrale generalizzato

Da Wikiversità, l'apprendimento libero.

Analisi matematica > Integrale generalizzato

lezione
lezione
Integrale generalizzato
Tipo di risorsa Tipo: lezione
Materia di appartenenza Materia: Analisi matematica
Avanzamento Avanzamento: lezione completa al 25%

Siano e sia una funzione continua. Si dice che è integrabile in senso generalizzato su

se:

[modifica]

Esiste finito

[modifica]

Esiste finito

[modifica]

Per un è integrabile in senso generalizzato su e su. In tal caso

Tenete ben presente che la scelta di non è affatto determinante.

Nota:
eventualmente fare la dimostrazione

In tutti questi casi, il limite finito (cioè l'integrale generalizzato) è per definizione uguale all'integrale e si dice convergente.

Teorema

[modifica]

Sia . è integrabile in senso generalizzato su se e solo se

Dimostrazione
[modifica]

Nota:
fare la dimostrazione

Proposizione

[modifica]
Dimostrazione
[modifica]

Nota:
fare la dimostrazione